#### Teaching Functional Programming

Zoltán Horváth hz@inf.elte.hu lecturers: István Bozó, Zoltán Csörnyei , Andrea Kovács, Gábor Páli, Máté Tejfel, Melinda Tóth

Faculty of Informatics, Eötvös Loránd University, Budapest

15th Workshop on Software Engineering Education and Reverse Engineering Bohinj, Slovenia, Aug 24, 2015

#### Why Functional Programming?

- emphasis on *what* computation should be performed and not how to compute it, helps to understand programming methodology with abstractions (problem specification, problem refinement, pre- and postconditions, types, invariants, programming theorems)
- close to the specification due to their inherited mathematical nature.
  - [ x\*x \\ x <- [1..] | odd(x) ]

```
\{x^2 \mid x \in \mathcal{N} \land 2 \nmid x\}
```

 referential transparency, equational reasoning for verification take n xs ++ drop n xs == xs

#### Why Functional Programming?

• clean, simple, and composable abstractions (e.g. use of higher-order functions).

and = foldr (&&) True

• parallel evaluation, Paraphrase - refactoring for multicore parallel patterns

5-10 times less SLOC, fewer errors, easier to maintain (improved distributed software robustness and productivity) queens 0 = [[]] queens n = [[q:b] \\ b <- queens (n - 1),q <- [0..7] | safe q b] safe q b = and [not (checks q b i) \\ i <- [0..(length b) - 1]] checks q b i = q == b !! i || abs (q - b !! i) == i + 1

# Who uses Functional Programming - Erlang, Haskell, Caml, F#, Clean ..

- Ericsson telecommunication (AXD301 ATM switch), simulation, testing, 3G, GPRS
- Amazon Simple DB (DBMS)
- Yahoo Online bookmarks service
- Facebook chat server
- T-Mobile SMS gateway
- Motorola call processing
- CouchDb document database server (multicore, multiserver clusters)
- YAWS Yet Another Web Server
- Wings3D 3D modeling
- Alcatel-Lucent- Haskell to prototype narrowband software radio systems, running in (soft) real-time
- Galois in application areas of security, information assurance and cryptography

Zoltán Horváth, Eötvös Loránd University Teaching Functional Programming

| Level | Course title                                 | Semester      |
|-------|----------------------------------------------|---------------|
| BSc   | Functional Programming                       | 2nd           |
|       | Advanced Haskell                             | optional      |
|       | Erlang                                       | optional      |
|       | $\lambda$ - calculus                         | optional      |
|       | Web and mobile application programming in F# | optional      |
|       | Verification Tools of Functional Programming | optional      |
|       | Agda                                         | optional      |
| MSc   | Concepts of Functional Programming Languages | 1st           |
|       | Type systems                                 | 1st           |
|       | Advanced Functional Programming              | 2nd           |
|       | Software Technology Lab - RefactorErl, DSL   | 4 semesters   |
| PhD   | Distributed Functional Programming           | freely chosen |
|       | Verification of Functional Programs          | freely chosen |

#### Topics, concepts

- Higher order functions
- Algebraic types, type classes
- Higher-order types, existential types
- Uniqueness typing
- Dynamics, generic programming
- Purely functional data structures
- Parallel and distributed programming
- Combinators, combinator libraries
- Monadic programming
- Dependent types
- Interactive programs (functional reactive programming)
- Embedded domain-specific languages

#### Methods and tools in eductaion

- lecture, lab, consultation
- E-learning ActiveHS (developed in Haskell)
- weekly test questions on concepts
- weekly home assignments to solve and upload via BE-AD
- complex home assignment
- lab programming test
- exam ActiveHS
- lecture notes, textbooks, slides
- svn repository for assignments

### ActiveHS – https://hackage.haskell.org/package/activehs

#### http://pnyf.inf.elte.hu/fp/Index\_en.xml

#### Exercise: 10, 9, 8, ..., -9, -10

List the numbers from 10 to -10.

Solution>

#### Exercise: 10, 9, 8, ..., -9, -10

List the numbers from 10 to -10.

Solution> [10,9 .. -10] [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10] :: [Integer] Jó megoldás! Szintén helyes megoldás: [10,9.. -10] :: [Int]

## BE-AD - https://github.com/andorp/bead

| BE-AD                                                                                                                                                     |                                                                                                                                                                                 | 17:35                                                        | PGJ / XTWQTT                  | Profile     | Logout |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|-------------|--------|
| Assignment:                                                                                                                                               | Catalan number                                                                                                                                                                  |                                                              |                               |             |        |
| Deadline:                                                                                                                                                 | 2015-09-06, 20:00:00                                                                                                                                                            |                                                              |                               |             |        |
| Time left:                                                                                                                                                | 15 day(s) 01:30:47                                                                                                                                                              |                                                              |                               |             |        |
| Give a Haskell express<br>numbers, where the <i>n</i> th<br>$C_n = \frac{1}{n+1} {2n \choose n}$ for <i>n</i><br><b>Submissio</b><br>product[110] / (prod | ion to calculate the 5 <sup>th</sup> Catalan number. In combinatorial Catalan number is given directly in terms of binomial co $\geq 0$ $m$ uct[15] * product[1(10-5)] * (5+1)) | l mathematics, the Catalan<br>efficients by the following fo | numbers form a sequ<br>rmula: | ience of na | tural  |
|                                                                                                                                                           | Submit                                                                                                                                                                          |                                                              |                               |             |        |
|                                                                                                                                                           |                                                                                                                                                                                 |                                                              |                               |             |        |

# developed in Haskell, used by 14 courses, 40 groups of students, 208 assignments, 12407 submitted solutions

Zoltán Horváth, Eötvös Loránd University Teaching Functional Programming

- BSc: 128 of 193 students completed all assignments, 125 passed the exam
- MSc: 66 of 97 completed the course successfully

#### **Functional Programming Summer Schools**

Central European Functional Programming Summer School CEFP 2005, 2007, 2009, 2011, 2013, 2015 - LNCS volumes supproted by CEEPUS, Erasmus IP and industry



Zoltán Horváth, Eötvös Loránd University

Teaching Functional Programming

#### Conclusions

- The precise formal definition of abstract concepts and experience in formal specification form a solid basis for better understanding on issues of functional programming and vice versa
- specification by pre- and postconditions, function compositions given in postcondition correspond to the structure of solution
- concepts with high expressive power (like higher order functions and types) need outstanding abilities, however not all of the students possess them.
- Industry needs a growing number of new staff members with expertise in functional programming.
- joint industry-university R&D labs are running in functional programming (static analysis, refactoring, defining FP embedded DSL-s for telecommunication)
- dozen of the PhD students have chosen functional programming as their main research domain.